
SCOOP Documentation
Release 0.5.3

Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy

August 28, 2012

CONTENTS

1 Features 3
1.1 Anatomy of a SCOOPed program . 3
1.2 Applications . 4

2 Manual 5
2.1 Install . 5
2.2 Usage . 6
2.3 API Reference . 13

3 Indices and tables 17

Python Module Index 19

i

ii

SCOOP Documentation, Release 0.5.3

SCOOP (Scalable COncurrent Operations in Python) is a distributed task module allowing concurrent parallel pro-
gramming on various environments, from heterogeneous grids to supercomputers.

Our philosophy is based on these ideas:

• The future is parallel;

• Simple is beautiful;

• Parallelism should be simpler.

These tenets are translated concretely in a minimum number of functions allowing maximum parallel efficiency while
keeping at minimum the inner knowledge required to use them. It is implemented with Python 3 in mind while being
compatible with 2.6+ to allow fast prototyping without sacrificing efficiency and speed.

CONTENTS 1

SCOOP Documentation, Release 0.5.3

2 CONTENTS

CHAPTER

ONE

FEATURES

SCOOP has many features and advantages over Futures, multiprocessing and similar modules, such as:

• Harness the power of multiple computers over network;

• Ability to spawn subtasks within tasks;

• API compatible with PEP 3148;

• Parallelizing serial programs with only minor modifications;

• Efficient load-balancing.

1.1 Anatomy of a SCOOPed program

SCOOP can handle multiple diversified multi-layered tasks. You can submit your different functions and data simul-
taneously and effortlessly while the framework executes them locally or remotely. Contrarily to most multiprocessing
frameworks, it allows to launch subtasks within tasks.

3

http://docs.python.org/dev/library/concurrent.futures.html
http://docs.python.org/dev/library/multiprocessing.html
http://www.python.org/dev/peps/pep-3148

SCOOP Documentation, Release 0.5.3

Through SCOOP, you can simultaneously execute tasks that are of different nature (Discs of different colors) or
different by complexity (Discs radiuses). The module will handle the physical considerations of parallelization, such
as task distribution over your resources (load balancing), communications, etc.

1.2 Applications

The common applications of SCOOP consist of, but is not limited to:

• Evolutionary Algorithms

• Monte Carlo simulations

• Data mining

• Data processing

• I/O processing

• Graph traversal

4 Chapter 1. Features

CHAPTER

TWO

MANUAL

2.1 Install

2.1.1 Requirements

The software requirements for SCOOP are as follows:

• Python >= 2.6 or >= 3.2

• Greenlet >= 0.3.4

• PyZMQ and libzmq >= 2.2.0

• ssh for remote execution

2.1.2 Installation

To install SCOOP and its other dependencies, use pip as such:

pip install scoop

Note: If you don’t already have libzmq installed in a default library location, please visit the PyZMQ installation
page for assistance.

Remote usage

Because remote host connection needs to be done without a prompt, you must use ssh keys to allow passwordless
authentication. You should make sure that your public ssh key is contained in the ~/.ssh/authorized_keys2
file on the remote systems (Refer to the ssh manual). If you have a shared /home/ over your systems, you can do as
such:

[~]$ mkdir ~/.ssh; cd ~/.ssh
[.ssh]$ ssh-keygen -t dsa
[.ssh]$ cat id_dsa.pub >> authorized_keys2

Note: If your remote hosts needs special configuration (non-default port, some specified username, etc.), you should
do it in your ssh client configuration file (by default ~/.ssh/config).

5

http://www.python.org/
http://pypi.python.org/pypi/greenlet
http://www.zeromq.org/bindings:python
http://www.zeromq.org/
http://www.pip-installer.org/en/latest/index.html
http://www.zeromq.org/
http://www.zeromq.org/bindings:python/
http://www.zeromq.org/bindings:python/
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh

SCOOP Documentation, Release 0.5.3

2.2 Usage

2.2.1 Nomenclature

Keyword Description
Future(s) The Future class encapsulates the asynchronous execution of a callable.
Broker Process dispatching Futures.
Worker Process executing Futures.
Root The worker executing the root Future.

2.2.2 Architecture diagram

The future(s) distribution over workers is done by a variation of the Broker pattern. In such a pattern, workers act as
independant elements that interact with a broker to mediate their communications.

2.2.3 How to use SCOOP in your code

The philosophy of SCOOP is loosely built around the futures module proposed by PEP 3148. It primarily defines a
map() and a submit() function allowing asynchroneous computation that SCOOP will propagate to its workers.

Map

A map() function applies multiple parameters to a single function. For example, if you want to apply the abs() function
to every number of a list:

import random
data = [random.randint(-1000,1000) for r in range(1000)]

Without Map
result = []
for i in data:
result.append(abs(i))

6 Chapter 2. Manual

http://zguide.zeromq.org/page:all#A-Request-Reply-Broker
http://www.python.org/dev/peps/pep-3148
http://docs.python.org/library/functions.html#map
http://docs.python.org/library/functions.html#abs

SCOOP Documentation, Release 0.5.3

Using a Map
result = list(map(abs, data))

SCOOP’s map() returns a generator retriving the results in their proper order. It can thus act as a parallel substitute
to the standard map(), for instance:

Script to be launched with: python -m scoop scriptName.py
import random
from scoop import futures
data = [random.randint(-1000,1000) for r in range(1000)]

if __name__ == ’__main__’:
Python’s standard serial function
dataSerial = list(map(abs, data))

SCOOP’s parallel function
dataParallel = list(futures.map(abs, data))

assert dataSerial == dataParallel

Warning: In your root program, you must check if __name__ == __main__ as show above. Failure to do
so will result in every worker trying to run their own instance of the program. This ensures that every worker waits
for parallelized tasks spawned by the root worker.

Note: Your callable function passed to SCOOP must be picklable in its entirety.

Submit

SCOOP’s submit() returns a Future instance. This allows a finer control over the Futures, such as out-of-order
results retrieval.

Note: Functions submited to scoop must return a value. Keep in mind that objects are not shared between workers
and that changes made to an object in a function are not made in every workers.

2.2.4 Examples

Examples are available in the examples/ directory of SCOOP.

Please refer to the Examples page where detailed explanations are available.

2.2.5 How to launch SCOOP programs

The scoop module spawns the needed broker and workers on a given list of computers, including remote ones via ssh.

Programs using SCOOP need to be launched with the -m scoop parameter passed to Python, as such:

cd scoop/examples/
python -m scoop fullTree.py

Note: When using a Python version prior to 2.7, you must start SCOOP using -m scoop.__main__.

2.2. Usage 7

http://docs.python.org/library/functions.html#map
https://code.google.com/p/scoop/source/browse/examples/

SCOOP Documentation, Release 0.5.3

You should also consider using an up-to-date version of Python.

Here is a list of the parameters that can be passed to SCOOP:

python -m scoop --help
usage: python -m scoop [-h]

[--hosts [HOSTS [HOSTS ...]] | --hostfile HOSTFILE]
[--path PATH] [--nice NICE]
[--verbose] [--log LOG] [-n N]
[-e] [--broker-hostname BROKER_HOSTNAME]
[--python-executable PYTHON_EXECUTABLE]
[--pythonpath PYTHONPATH] [--debug]
executable ...

Starts a parallel program using SCOOP.

positional arguments:
executable The executable to start with SCOOP
args The arguments to pass to the executable

optional arguments:
-h, --help show this help message and exit
--hosts [HOSTS [HOSTS ...]], --host [HOSTS [HOSTS ...]]

The list of hosts. The first host will execute the
root program. (default is 127.0.0.1)

--hostfile HOSTFILE The hostfile name
--path PATH, -p PATH The path to the executable on remote hosts (default

is local directory)
--nice NICE *nix niceness level (-20 to 19) to run the executable
--verbose, -v Verbosity level of this launch script (-vv for more)
--log LOG The file to log the output (default is stdout)
-n N Total number of workers to launch on the hosts.

Workers are spawned sequentially over the hosts.
(ie. -n 3 with 2 hosts will spawn 2 workers on the
first host and 1 on the second.) (default: Number of
CPUs on current machine)

-e Activate ssh tunnels to route toward the broker
sockets over remote connections (may eliminate routing
problems and activate encryption but slows down
communications)

--broker-hostname BROKER_HOSTNAME
The externally routable broker hostname / ip (defaults
to the local hostname)

--python-executable PYTHON_EXECUTABLE
The python executable with which to execute the script

--pythonpath PYTHONPATH
The PYTHONPATH environment variable (default is
current PYTHONPATH)

--debug Turn on the debuging

A remote workers example may be as follow:

python -m scoop --hostfile hosts -vv -n 6 your_program.py [your arguments]

8 Chapter 2. Manual

SCOOP Documentation, Release 0.5.3

Argument Meaning
-m scoop Mandatory Uses SCOOP to run program.
–hostfile hosts is a file containing a list of host to launch SCOOP
-vv Double verbosity flag.
-n 6 Launch a total of 6 workers.
your_program.py The program to be launched.
[your arguments] The arguments that needs to be passed to your program.

Note: Your local hostname must be externally routable for remote hosts to be able to connect to it. If you don’t
have a DNS properly set up on your local network or a system hosts file, consider using the --broker-hostname
argument to provide your externally routable IP or DNS name to SCOOP. You may as well be interested in the -e
argument for testing purposes.

Hostfile format

You can specify the hosts with a hostfile and pass it to SCOOP using the --hostfile argument. The hostfile should
use the following syntax:

hostname_or_ip 4
other_hostname 5
third_hostname 2

The name being the system hostname and the number being the number of workers to launch on this host.

Using a list of host

You can also use a list of host with the --host [...] flag. In this case, you must put every host separated by a
space the number of time you wish to have a worker on each of the node. For example:

python -m scoop --host machine_a machine_a machine_b machine_b your_program.py

This example would start two workers on machine_a and two workers on machine_b.

Choosing the number of workers

The number of workers started should be equal to the number of cores you have on each machine. If you wish to start
more or less workers than specified in your hostfile or in your hostlist, you can use the -n parameter.

Note: The -n parameter overrides any previously specified worker amount.

If -n if less than the sum of workers specified in the hostfile or hostlist, the workers are launched in batch by host until
the parameter is reached. This behaviour may ignore latters hosts.

If -n if more than the sum of workers specified in the hostfile or hostlist, the remaining workers are distributed using
a Round-Robin algorithm. Each host will increment its worker amount until the parameter is reached.

Be aware that tinkering with this parameter may hinder performances. The default value choosen by SCOOP (one
worker by physical core) is generaly a good value.

2.2. Usage 9

SCOOP Documentation, Release 0.5.3

2.2.6 Startup scripts (cluster or grid)

You must provide a startup script on systems using a scheduler. Here are some example startup scripts using different
grid task managers. They are available in the examples/submitFiles directory.

Note: Please note that these are only examples. Refer to the documentation of your scheduler for the list of
arguments needed to run the task on your grid or cluster.

Torque (Moab & Maui)

Here is an example of a submit file for Torque:

#!/bin/bash
Please refer to your grid documentation for available flags. This is only an example.
#PBS -l procs=16
#PBS -V
#PBS -N SCOOPJob

Path to your executable. For example, if you extracted SCOOP to $HOME/downloads/scoop
cd $HOME/downloads/scoop/examples

Add any addition to your environment variables like PATH. For example, if your local python installation is in $HOME/python
export PATH=$HOME/python/bin:$PATH

If, instead, you are using the python offered by the system, you can stipulate it’s library path via PYTHONPATH
#export PYTHONPATH=$HOME/wanted/path/lib/python+version/site-packages/:$PYTHONPATH
Or use VirtualEnv via virtualenvwrapper here:
#workon yourenvironment

Launch SCOOP using the hosts
python -m scoop -vv fullTree.py

Sun Grid Engine (SGE)

Here is an example of a submit file for SGE:

#!/bin/bash
Please refer to your grid documentation for available flags. This is only an example.
#$ -l h_rt=300
#$ -pe test 16
#$ -S /bin/bash
#$ -cwd
#$ -notify

Path to your executable. For example, if you extracted SCOOP to $HOME/downloads/scoop
cd $HOME/downloads/scoop/examples

Add any addition to your environment variables like PATH. For example, if your local python installation is in $HOME/python
export PATH=$HOME/python/bin:$PATH

If, instead, you are using the python offered by the system, you can stipulate it’s library path via PYTHONPATH
#export PYTHONPATH=$HOME/wanted/path/lib/python+version/site-packages/:$PYTHONPATH
Or use VirtualEnv via virtualenvwrapper here:
#workon yourenvironment

10 Chapter 2. Manual

https://code.google.com/p/scoop/source/browse/examples/submitFiles/

SCOOP Documentation, Release 0.5.3

Launch the remotes workers
python -m scoop -vv fullTree.py

2.2.7 Pitfalls

Program scope

As a good Python practice (see PEP 395), you should always wrap the executable part of your program using:

if __name__ == ’__main__’:

This is mandatory when using parallel frameworks such as multiprocessing and SCOOP. Otherwise, each worker (or
equivalent) will try to execute your code serially.

Evaluation laziness

The map() and submit() will distribute their Futures both locally and remotely. Futures executed locally will be
computed upon access (iteration for the map() and result() for submit()).Futures distributed remotely will be
executed right away.

Large datasets

Every parameter sent to a function by a map() or submit() gets serialized and sent within the Future to its worker.
It results in slow speeds and network overload when sending large elements as a parameter to your function(s).

You should consider using a global variable in your module scope for passing large elements; it will then be loaded on
launch by every worker and won’t overload your network.

Incorrect:

from scoop import futures

def mySum(inData):
"""The worker will receive all its data from network."""
return sum(inData)

if __name__ == ’__main__’:
data = [[i for i in range(x, x + 1000)] for x in range(0, 8001, 1000)]
results = list(futures.map(mySum, data))

Better:

from scoop import futures

data = [[i for i in range(x, x + 1000)] for x in range(0, 8001, 1000)]

def mySum(inIndex):
"""The worker will only receive an index from network."""
return sum(data[inIndex])

if __name__ == ’__main__’:
results = list(futures.map(mySum, range(len(data))))

2.2. Usage 11

http://www.python.org/dev/peps/pep-0395#what-s-in-a-name

SCOOP Documentation, Release 0.5.3

SCOOP and greenlets

Warning: Since SCOOP uses greenlets to schedule and run futures. Programs that use their own greenlets won’t
work with SCOOP. However, you should consider replacing the greenlets in your code by SCOOP functions.

2.3 Examples

You can find the examples detailed on this page in the examples/ directory of SCOOP.

Please check the API Reference for any implentation detail of the proposed functions.

2.3.1 Computation of π

A Monte-Carlo method to calculate π using SCOOP to parallelize its com-
putation is found in examples/piCalc.py. You should familiarize
yourself with Monte-Carlo methods before going forth with this example.

Figure 2.1: Image from Wikipedia made by CaitlinJo that shows the Monte
Carlo computation of π.

First, we need to import the needed
functions as such:

1 from math import hypot
2 from random import random
3 from scoop import futures

The Monte-Carlo method is then de-
fined. It spawns two pseudo-random
numbers that are fed to the hypot function which calculates the hypotenuse of its parameters. This step computes
the Pythagorean equation (

√
x2 + y2) of the given parameters to find the distance from the origin (0,0) to the ran-

domly placed point (which X and Y values were generated from the two pseudo-random values). Then, the result is
compared to one to evaluate if this point is inside or outside the unit disk. If it is inside (have a distance from the origin
lesser than one), a value of one is produced (red dots in the figure), otherwise the value is zero (blue dots in the figure).
The experiment is repeated tries number of times with new random values.

The function returns the number times a pseudo-randomly generated point fell inside the unit disk for a given number
of tries.

1 def test(tries):
2 return sum(hypot(random(), random()) < 1 for i in range(tries))

One way to obtain a more precise result with a Monte-Carlo method is to perform the method multiple times. The
following function executes repeatedly the previous function to gain more precision. These calls are handled by
SCOOP using it’s map() function. The results, that is the number of times a random distribution over a 1x1 square
hits the unit disk over a given number of tries, are then summed and divided by the total of tries. Since we only covered
the upper right quadrant of the unit disk because both parameters are positive in a cartesian map, the result must be
multiplied by 4 to get the relation between area and circumference, namely π.

1 def calcPi(nbFutures, tries):
2 expr = futures.map(test, [tries] * nbFutures)
3 return 4. * sum(expr) / float(nbFutures * tries)

As stated above, you must wrap your code with a test for the __main__ name. You can now run your code using the
command python -m scoop.

12 Chapter 2. Manual

https://code.google.com/p/scoop/source/browse/examples/
http://en.wikipedia.org/wiki/Monte_Carlo_method
https://code.google.com/p/scoop/source/browse/examples/piCalc.py
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://commons.wikimedia.org/wiki/User:CaitlinJo
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://docs.python.org/library/math.html#math.hypot
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Unit_disk
http://en.wikipedia.org/wiki/Unit_disk
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Unit_disk
http://en.wikipedia.org/wiki/Unit_disk

SCOOP Documentation, Release 0.5.3

1 if __name__ == "__main__":
2 print("pi = {}".format(calcPi(3000, 5000)))

2.3.2 Overall example

The examples/fullTree.py example holds a pretty good wrap-up of available functionnalities. It notably shows
that SCOOP is capable of handling twisted and complex hierarchical requirements.

Getting acquainted with the previous examples is fairly enough to use SCOOP, no need to dive into this complicated
example.

2.4 API Reference

2.4.1 Futures module

The following methods are part of the futures module. They can be accessed like so:

from scoop import futures

results = futures.map(func, data)
futureObject = futures.submit(func, arg)
...

More informations are available in the Usage document.

scoop.futures.as_completed(fs, timeout=None)
An iterator over the given futures that yields each as it completes.

Parameters

• fs – The sequence of Futures (possibly created by another instance) to wait upon.

• timeout – The maximum number of seconds to wait [To be done in future version of
SCOOP]. If None, then there is no limit on the wait time.

Returns An iterator that yields the given Futures as they complete (finished or cancelled).

scoop.futures.map(func, *iterables, **kargs)
Equivalent to map(func, *iterables, ...) but func is executed asynchronously and several calls to func may
be made concurrently. The returned iterator raises a TimeoutError if __next__() is called and the result isn’t
available after timeout seconds from the original call to map() [To be done in future version of SCOOP]. If
timeout is not specified or None then there is no limit to the wait time. If a call raises an exception then that
exception will be raised when its value is retrieved from the iterator.

Parameters

• func – Any picklable callable object (function or class object with __call__ method); this
object will be called to execute the Futures. The callable must return a value.

• iterables – Iterable objects; each will be zipped to form an iterable of arguments tuples that
will be passed to the callable object as a separate Future.

• timeout – The maximum number of seconds to wait [To be done in future version of
SCOOP]. If None, then there is no limit on the wait time.

• kargs – A dictionary of additional keyword arguments that will be passed to the callable
object.

2.4. API Reference 13

https://code.google.com/p/scoop/source/browse/examples/fullTree.py
http://docs.python.org/library/functions.html#map

SCOOP Documentation, Release 0.5.3

Returns A generator of map results, each corresponding to one map iteration.

scoop.futures.shutdown(wait=True)
This function is here for compatibility with futures (PEP 3148).

Parameters wait – Unapplied parameter.

scoop.futures.submit(func, *args, **kargs)
Submit an independent parallel scoop._types.Future that will either run locally or remotely as
func(*args, **kargs).

Parameters

• func – Any picklable callable object (function or class object with __call__ method); this
object will be called to execute the Future. The callable must return a value.

• args – A tuple of positional arguments that will be passed to the callable object.

• kargs – A dictionary of additional keyword arguments that will be passed to the callable
object.

Returns A future object for retrieving the Future result.

On return, the Future is pending execution locally, but may also be transfered remotely depending on load or
on remote distributed workers. You may carry on with any further computations while the Future completes.
Result retrieval is made via the result() function on the Future.

scoop.futures.wait(fs, timeout=None, return_when=’ALL_COMPLETED’)
Wait for the futures in the given sequence to complete.

Parameters

• fs – The sequence of Futures (possibly created by another instance) to wait upon.

• timeout – The maximum number of seconds to wait [To be done in future version of
SCOOP]. If None, then there is no limit on the wait time.

• return_when – Indicates when this function should return. The options are:

FIRST_COMPLETEDReturn when any future finishes or is cancelled.
FIRST_EXCEPTIONReturn when any future finishes by raising an exception. If no future

raises an exception then it is equivalent to ALL_COMPLETED.
ALL_COMPLETEDReturn when all futures finish or are cancelled.

Returns A named 2-tuple of sets. The first set, named ‘done’, contains the futures that completed (is
finished or cancelled) before the wait completed. The second set, named ‘not_done’, contains
uncompleted futures.

2.4.2 Future class

The submit() function returns a Future object. This instance possess the following methods.

class scoop._types.Future(parentId, callable, *args, **kargs)
This class encapsulates an independent future that can be executed in parallel. A future can spawn other parallel
futures which themselves can recursively spawn other futures.

add_done_callback(callable)
Attach a callable to the future that will be called when the future is cancelled or finishes running. Callable
will be called with the future as its only argument.

Added callables are called in the order that they were added and are always called in a thread belonging to
the process that added them. If the callable raises an Exception then it will be logged and ignored. If the
callable raises another BaseException then behavior is not defined.

14 Chapter 2. Manual

SCOOP Documentation, Release 0.5.3

If the future has already completed or been cancelled then callable will be called immediately.

cancel()
If the call is currently being executed then it cannot be cancelled and the method will return False, other-
wise the call will be cancelled and the method will return True.

cancelled()
True if the call was successfully cancelled, False otherwise.

done()
True if the call was successfully cancelled or finished running, False otherwise.

exception(timeout=None)
Return the exception raised by the call. If the call hasn’t yet completed then this method will wait up to
timeout seconds [To be done in future version of SCOOP]. If the call hasn’t completed in timeout seconds
then a TimeoutError will be raised. If timeout is not specified or None then there is no limit to the wait
time.

If the future is cancelled before completing then CancelledError will be raised.

If the call completed without raising then None is returned.

Returns The exception raised by the call.

result(timeout=None)
Return the value returned by the call. If the call hasn’t yet completed then this method will wait up to
‘’timeout” seconds [To be done in future version of SCOOP]. If the call hasn’t completed in timeout
seconds then a TimeoutError will be raised. If timeout is not specified or None then there is no limit to the
wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised an exception then this method will raise the same exception.

Returns The value returned by the call.

running()
True if the call is currently being executed and cannot be cancelled.

2.4. API Reference 15

SCOOP Documentation, Release 0.5.3

16 Chapter 2. Manual

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

17

SCOOP Documentation, Release 0.5.3

18 Chapter 3. Indices and tables

PYTHON MODULE INDEX

s
scoop.futures, 13

19

	Features
	Anatomy of a SCOOPed program
	Applications

	Manual
	Install
	Usage
	API Reference

	Indices and tables
	Python Module Index

