

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	 Project Homepage

		SCOOP 0.7 2.0 documentation

 [image: _images/logo.png]
SCOOP (Scalable COncurrent Operations in Python) is a distributed task
module allowing concurrent parallel programming on various environments,
from heterogeneous grids to supercomputers.

Philosophy

Our philosophy is based on these ideas:

	The future is parallel;

	Simple is beautiful;

	Parallelism should be simpler.

These tenets are translated concretely in a minimum number of functions
allowing maximum parallel efficiency while keeping at minimum the
inner knowledge required to use them. It is implemented with Python 3 in mind
while being compatible with 2.6+ to allow fast prototyping without sacrificing
efficiency and speed.

Features

SCOOP has many features and advantages over
Futures [http://docs.python.org/dev/library/concurrent.futures.html],
multiprocessing [http://docs.python.org/dev/library/multiprocessing.html]
and similar modules, such as:

	Harness the power of multiple computers over network;

	Ability to spawn subtasks within tasks;

	API compatible with PEP 3148 [https://www.python.org/dev/peps/pep-3148];

	Parallelizing serial programs with only minor modifications;

	Efficient load-balancing.

Anatomy of a SCOOPed program

SCOOP can handle multiple diversified multi-layered tasks. You can submit your different functions and data simultaneously and effortlessly while the framework executes them locally or remotely. Contrarily to most multiprocessing frameworks, it allows to launch subtasks within tasks.

[image: _images/introductory_tree.png]
Through SCOOP, you can simultaneously execute tasks that are of different
nature (Discs of different colors) or different by complexity (Discs radiuses). The module will handle the physical considerations of parallelization such as task distribution over your resources (load balancing), communications, etc.

Applications

The common applications of SCOOP consist of, but is not limited to:

	Evolutionary Algorithms

	Monte Carlo simulations

	Data mining

	Data processing

	I/O processing

	Graph traversal

Manual

	Install
	Dependencies

	Prerequisites

	Installation

	Remote usage

	HPC usage

	Usage
	Nomenclature

	Architecture diagram

	Mapping API

	Reduction API

	Utilities

	How to launch SCOOP programs

	Use with a scheduler

	Use on cloud services

	Pitfalls

	Examples
	Introduction to the map() function

	Computation of [image: \pi]

	Sharing Constant

	Overall example

	API Reference
	Futures module

	Future class

	Shared module

	SCOOP Constants and objects

	Contributing
	Reporting a bug

	Retrieving the latest code

	Coding guidelines

	Architecture

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	 Project Homepage

		SCOOP 0.7 2.0 documentation

Install

Dependencies

The software requirements for SCOOP are as follows:

	Python [http://www.python.org/] >= 2.6 or >= 3.2

	Distribute [http://packages.python.org/distribute/] >= 0.6.2 or setuptools [https://pypi.python.org/pypi/setuptools] >= 0.7

	Greenlet [http://pypi.python.org/pypi/greenlet] >= 0.3.4

	pyzmq [http://www.zeromq.org/bindings:python] >= 13.1.0 and
libzmq [http://www.zeromq.org/] >= 3.2.0

	ssh for remote execution

Prerequisites

Linux

You must have the Python headers (to compile pyzmq and greenlet) and pip
installed. These should be simple to install using the package manager
provided with your distribution.

To get the prerequisites on an Ubuntu system, execute the following in a
console:

sudo apt-get install python-dev python-pip

Ensure that your compiler is GCC as it is the tested compiler for pyzmq and
greenlet.

Mac

The easiest way to get started is by using Homebrew [http://brew.sh/]. Once
you’ve brewed your Python version and ZeroMQ, you are ready to install SCOOP.

Windows

Please download and install pyzmq before installing SCOOP. This can be done by
using the binary installer provided at their download page [https://github.com/zeromq/pyzmq/downloads]. These installers will provide
libzmq alongside pyzmq.

You can install pip on windows using either Christoph Gohlke [http://www.lfd.uci.edu/~gohlke/pythonlibs/#pip] windows installers or the
get-pip.py script as shown in the pip-installer.org webpage [http://www.pip-installer.org/en/latest/installing.html].

Installation

To install SCOOP, use pip [http://www.pip-installer.org/en/latest/index.html] as such:

pip install scoop

POSIX Operating systems

Connection to remote hosts is done using SSH. An implementation of SSH must
be installed in order to be able to use this feature.

Windows Operating System

On Windows, this will try to compile libzmq. You can skip this compilation by
installing pyzmq using the installer available at their
download page [https://github.com/zeromq/pyzmq/downloads].
This installer installs libzmq alongside pyzmq.

Furthermore, to be able to use the multi-system capabilities of SCOOP, a SSH
implementation must be available. This may be done either by using
Cygwin [http://www.cygwin.com/] or
OpenSSH for Windows [http://sshwindows.sourceforge.net/download/].

Remote usage

Because remote host connection needs to be done without a prompt, you must use
ssh keys to allow passwordless authentication between every computing
node. You should make sure that your public ssh key is contained in the
~/.ssh/authorized_keys file on the remote systems (Refer to the ssh
manual [http://www.openbsd.org/cgi-bin/man.cgi?query=ssh]). If you have a
shared /home/ over your systems, you can do as such:

[~]$ mkdir ~/.ssh; cd ~/.ssh
[.ssh]$ ssh-keygen -t dsa
[.ssh]$ cat id_dsa.pub >> authorized_keys
[.ssh]$ chmod 700 ~/.ssh ; chmod 600 ./id_dsa ; chmod 644 ./id_dsa.pub ./authorized_keys

Note

If your remote hosts needs special configuration (non-default port, some
specified username, etc.), you should do it in your ssh client
configuration file (by default ~/.ssh/config).

Note

The following parameters of ssh are used by SCOOP:

	-x : Deactivates X forwarding

	-n : Prevents reading from stdin (batch mode)

	-oStrictHostKeyChecking=no : Allow the connection to hosts ssh sees for the first time. Without it, ssh interactively asks to accept the identity of the peer.

HPC usage

If you use an Infiniband network, you may want to use an RDMA accelerated
socket alternative instead of TCP over IB. In order to do so, you can use
libsdp. This can be done by performing the following steps:

$ wget https://www.openfabrics.org/downloads/libsdp/libsdp-1.1.108-0.17.ga6958ef.tar.gz
$ tar xfvz libsdp-1.1.108-0.17.ga6958ef.tar.gz
$ cd libsdp-1.1.108
$./configure --prefix=$HOME && make && make install

Once the compilation is done, you can use it by creating a file containing this
(for bash):

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib/
export LD_PRELOAD=libsdp.so

By passing this file to the --prolog parameter of SCOOP, SDP sockets will
be used instead of TCP over IB.

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	 Project Homepage

		SCOOP 0.7 2.0 documentation

Usage

Nomenclature

	Keyword
	Description

	Future(s)
	The Future class encapsulates the asynchronous execution of a callable.

	Broker
	Process dispatching Futures.

	Worker
	Process executing Futures.

	Root
	The worker executing the root Future, your main program.

Architecture diagram

The future(s) distribution over workers is done by a variation of the
Broker pattern [http://zguide.zeromq.org/page:all#A-Request-Reply-Broker].
In such a pattern, workers act as independant elements that interact with a
broker to mediate their communications.

[image: _images/architecture.png]

Mapping API

The philosophy of SCOOP is loosely built around the futures module proposed
by PEP 3148 [https://www.python.org/dev/peps/pep-3148]. It primarily defines a map() and a
submit() function allowing asynchroneous computation that
SCOOP will propagate to its workers.

Map

A map() [http://docs.python.org/library/functions.html#map] function applies multiple parameters to a single function. For
example, if you want to apply the abs() [http://docs.python.org/library/functions.html#abs] function to every number of a list:

import random
data = [random.randint(-1000, 1000) for r in range(1000)]

Without Map
result = []
for i in data:
 result.append(abs(i))

Using a Map
result = list(map(abs, data))

SCOOP’s map() returns a generator iterating over the
results in the same order as its inputs. It can thus act as a parallel
substitute to the standard map() [http://docs.python.org/library/functions.html#map], for instance:

Script to be launched with: python -m scoop scriptName.py
import random
from scoop import futures
data = [random.randint(-1000, 1000) for r in range(1000)]

if __name__ == '__main__':
 # Python's standard serial function
 dataSerial = list(map(abs, data))

 # SCOOP's parallel function
 dataParallel = list(futures.map(abs, data))

 assert dataSerial == dataParallel

Warning

In your root program, you must check if __name__ == '__main__' as
shown above.
Failure to do so will result in every worker trying to run their own
instance of the program. This ensures that every worker waits for
parallelized tasks spawned by the root worker.

Note

Your callable function passed to SCOOP must be picklable in its entirety.

Note that the pickle module is limited to
top level functions and classes as stated in the
documentation [http://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled].

Note

Keep in mind that objects are not shared between workers and that changes
made to an object in a function are not seen by other workers.

Map_as_completed

The map_as_completed() function is used exactly in the
same way as the map() function. The only difference is
that this function will yield results as soon as they are made available.

Submit

SCOOP’s submit() returns a Future
instance.
This allows a finer control over the Futures, such as out-of-order results
retrieval.

Reduction API

mapReduce

The mapReduce() function allows to parallelize a reduction
function after applying the aforementioned map() function.
It returns a single element.

A reduction function takes the map results and applies a function cumulatively
to it.
For example, applying reduce(lambda x, y: x+y, ["a", "b", "c", "d"]) would
execute (((("a")+"b")+"c")+"d") give you the result "abcd".

More information is available in the
standard Python documentation on the reduce function [http://docs.python.org/3.0/library/functools.html#functools.reduce].

A common reduction usage consist of a sum as the following example:

Script to be launched with: python -m scoop scriptName.py
import random
import operator
from scoop import futures
data = [random.randint(-1000, 1000) for r in range(1000)]

if __name__ == '__main__':
 # Python's standard serial function
 serialSum = sum(map(abs, data))

 # SCOOP's parallel function
 parallelSum = futures.mapReduce(abs, operator.add, data)

 assert serialSum == parallelSum

Note

You can pass any arbitrary reduction function, not only operator ones.

Architecture

SCOOP will automatically generate a binary reduction tree and submit it.
Every level of the tree contain reduction nodes except for the bottom-most
which contains the mapped function.

[image: _images/reduction.png]

Utilities

Object sharing API

Sharing constant objects between workers is available using the
shared module.

Its functionnalities are summarised in this example:

from scoop import futures, shared

def myParallelFunc(inValue):
 myValue = shared.getConst('myValue')
 return inValue + myValue

if __name__ == '__main__':
 shared.setConst(myValue=5)
 print(list(futures.map(myParallelFunc, range(10))))

Note

A constant can only be defined once on the entire pool of workers. More
information in the Shared module reference.

Logging

You can use the scoop.logger to output useful information alongside your log
messages such as the time, the worker name which emitted the message and the
module in which the message was emitted.

Here is a sample usage:

import scoop

scoop.logger.warn("This is a warning!")

How to launch SCOOP programs

Programs using SCOOP, such as the ones in the examples/ [https://github.com/soravux/scoop/tree/master/examples/] directory,
need to be launched with the -m scoop parameter passed to Python, as
such:

cd scoop/examples/
python -m scoop fullTree.py

Note

When using a Python version prior to 2.7, you must start SCOOP using
-m scoop.__main__ .

You should also consider using an up-to-date version of Python.

Launch in details

The SCOOP module spawns the needed broker(s) and worker(s) on the given list
of computers, including remote ones via ssh.

Every worker imports your program with a __name__ variable different than
__main__ then awaits orders given by the root node to execute available
functions. This is necessary to have references over your functions and
variables in the global scope.

This means that everything (definitions, assignments, operations, etc.) in the
global scope of your program will be executed by every worker. To ensure a
section of your code is only executed once, you must place a conditional
barrier such as this one:

if __name__ == '__main__':

An example with remote workers may be as follow:

python -m scoop --hostfile hosts -vv -n 6 your_program.py [your arguments]

	Argument
	Meaning

	-m scoop
	Mandatory Uses SCOOP to run program.

	–hostfile
	hosts is a file containing a list of host to launch SCOOP

	-vv
	Double verbosity flag.

	-n 6
	Launch a total of 6 workers.

	your_program.py
	The program to be launched.

	[your arguments]
	The arguments that needs to be passed to your program.

Note

Your local hostname must be externally routable for remote hosts to be able to connect to it. If you don’t have a DNS properly set up on your local network or a system hosts file, consider using the --broker-hostname argument to provide your externally routable IP or DNS name to SCOOP. You may as well be interested in the -e argument for testing purposes.

Hostfile format

You can specify the hosts with a hostfile and pass it to SCOOP using the --hostfile argument.
The hostfile should use the following syntax:

hostname_or_ip 4
other_hostname
third_hostname 2

The name being the system hostname and the number being the number of workers
to launch on this host. The number of workers to launch is optional. If
omitted, SCOOP will launch as many workers as there are cores on the machine.

Using a list of host

You can also use a list of host with the --host [...] flag. In this
case, you must put every host separated by a space the number of time you wish
to have a worker on each of the node. For example:

python -m scoop --host machine_a machine_a machine_b machine_b your_program.py

This example would start two workers on machine_a and two workers on machine_b.

Choosing the number of workers

The number of workers started should be equal to the number of cores you have
on each machine. If you wish to start more or less workers than specified in your
hostfile or in your hostlist, you can use the -n parameter.

Be aware that tinkering with this parameter may hinder performances.

Note

The -n parameter overrides any previously specified worker
amount.

If -n is less than the sum of workers specified in the hostfile
or hostlist, the workers are launched in batch by host until the parameter
is reached. This behavior may ignore latters hosts.

If -n is more than the sum of workers specified in the hostfile
or hostlist, the remaining workers are distributed using a Round-Robin
algorithm. Each host will increment its worker amount until the parameter
is reached.

Use with a scheduler

You must provide a startup script on systems using a scheduler such as
supercomputers or laboratory grids. Here are some example startup scripts
using different grid task managers. Some example startup scripts are available
in the examples/submit_files [https://github.com/soravux/scoop/tree/master/examples/submit_files/] directory.

SCOOP natively supports Sun Grid Engine (SGE), Torque (PBS-compatible, Moab,
Maui) and SLURM. That means that a minimum launch file is needed while the
framework recognizes automatically the nodes assigned to your task.

Note

These are only examples. Refer to the documentation of your scheduler
for the list of arguments needed to run the task on your grid or cluster.

Use on cloud services

Pitfalls

Program scope

As a good Python practice (see PEP 395#what-s-in-a-name [https://www.python.org/dev/peps/pep-0395#what-s-in-a-name]), you should always
wrap the executable part of your program using:

if __name__ == '__main__':

This is mandatory when using parallel frameworks such as multiprocessing or
SCOOP. For an explanation why, read the Launch in details section.

If your program lacks this conditional barrier, your whole program will be
executed as many times as there are workers, meaning duplicate work is being
done.

Unpicklable Future

Only functions or classes declared at the top level of your program are
picklables. This is a limitation of Python’s pickle module [http://docs.python.org/3/library/pickle.html]. Here are some examples of
non-working map invocations:

from scoop import futures

class myClass(object):
 @staticmethod
 def myFunction(x):
 return x

if __name__ == '__main__':
 def mySecondFunction(x):
 return x

 # Both of these calls won't work because Python pickle won't be able to
 # pickle or unpickle the function references.
 wrongCall1 = futures.map(myClass.myFunction, [1, 2, 3, 4, 5])
 wrongCall2 = futures.map(mySecondFunction, [1, 2, 3, 4, 5])

Launching a faulty program will result in this error being displayed:

[...] This element could not be pickled: [...]

Mutable arguments

In standard programs, modifying a mutable function argument also modifies it
in the caller scope because objects are passed by reference. This side-effect
is not simulated in SCOOP. Function arguments are not serialized back along
its answer.

Lazy-like evaluation

The map() and submit() will
distribute their Futures both locally and remotely. Futures executed locally
will be computed upon access (iteration for the map()
and result() for submit()).
Futures distributed remotely will be executed right away.

Large datasets

Every parameter sent to a function by a map() or
submit() gets serialized and sent within the Future to
its worker. Sending large elements as parameter(s) to your function(s) results
in slow speeds and network overload.

You should consider using a global variable in your module scope for passing
large elements. It will then be loaded on launch by every worker and won’t
overload your network.

Unefficient:

from scoop import futures

def mySum(inData):
 """The worker will receive all its data from network."""
 return sum(inData)

if __name__ == '__main__':
 data = [[i for i in range(x, x + 1000)] for x in range(0, 8001, 1000)]
 results = list(futures.map(mySum, data))

Better efficiency:

from scoop import futures

data = [[i for i in range(x, x + 1000)] for x in range(0, 8001, 1000)]

def mySum(inIndex):
 """The worker will only receive an index from network."""
 return sum(data[inIndex])

if __name__ == '__main__':
 results = list(futures.map(mySum, range(len(data))))

SCOOP and greenlets

Warning

Since SCOOP uses greenlets to schedule and run futures, programs that use
their own greenlets won’t work with SCOOP. However, you should consider
replacing the greenlets in your code by SCOOP functions.

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	 Project Homepage

		SCOOP 0.7 2.0 documentation

Examples

You can find the examples detailed on this page and more in the
examples/ [https://github.com/soravux/scoop/tree/master/examples/] directory of SCOOP.

Please check the API Reference for any implentation detail of the proposed
functions.

Introduction to the map() function

A core concept of task-based parallelism as presented in SCOOP is the
map. An introductory example to map working is presented in examples/map_doc.py [https://github.com/soravux/scoop/blob/master/examples/map_doc.py].

	1
2
3
4
5
6
7
8
9

	from __future__ import print_function
from scoop import futures

def helloWorld(value):
 return "Hello World from Future #{0}".format(value)

if __name__ == "__main__":
 returnValues = list(futures.map(helloWorld, range(16)))
 print("\n".join(returnValues))

Line 1 allows Python 2 users to have a print function compatible with
Python 3.

On line 2, SCOOP is imported.

On line 4-5, the function that will be mapped is declared.

The condition on line 7 is a safety barrier that prevents the main program to
be executed on every workers. It ensures that the map is issued only by one
worker, the root.

The map() function is located on line 8.
It launches the helloWorld function 16 times, each time with a different
argument value selected from the range(16) argument.
This method is compatible with the standard Python map() [http://docs.python.org/library/functions.html#map] function and thus
can be seamlessly interchanged without modifying its arguments.

The example then prints the return values of every calls on line 9.

You can launch this program using python -m scoop.
The output should look like this:

~/scoop/examples$ python -m scoop -n 8 map_doc.py
Hello World from Future #0
Hello World from Future #1
Hello World from Future #2
[...]

Note

Results of a map are always ordered even if their computation was made
asynchronously on multiple computers.

Note

You can toy around with the previous example by changing the second parameter
of the map() function. Is it working with string arrays,
pure strings or other variable types?

Computation of [image: \pi]

A Monte-Carlo method [http://en.wikipedia.org/wiki/Monte_Carlo_method] to
calculate [image: \pi] using SCOOP to parallelize its computation is found in
examples/pi_calc.py [https://github.com/soravux/scoop/blob/master/examples/pi_calc.py].
You should familiarize yourself with
Monte-Carlo methods [http://en.wikipedia.org/wiki/Monte_Carlo_method] before
going forth with this example.

[image: Monte Carlo computation of Pi.]
Image from Wikipedia [http://en.wikipedia.org/wiki/Monte_Carlo_method]
made by CaitlinJo [http://commons.wikimedia.org/wiki/User:CaitlinJo]
that shows the Monte Carlo computation of [image: \pi].

First, we need to import the needed functions as such:

	1
2
3

	from math import hypot
from random import random
from scoop import futures

The Monte-Carlo method [http://en.wikipedia.org/wiki/Monte_Carlo_method] is
then defined. It spawns two pseudo-random numbers that are fed to the
hypot [http://docs.python.org/library/math.html#math.hypot] function which
calculates the hypotenuse of its parameters.
This step computes the
Pythagorean equation [http://en.wikipedia.org/wiki/Pythagorean_theorem]
([image: \sqrt{x^2+y^2}]) of the given parameters to find the distance from the
origin (0,0) to the randomly placed point (which X and Y values were generated
from the two pseudo-random values).
Then, the result is compared to one to evaluate if this point is inside or
outside the unit disk [http://en.wikipedia.org/wiki/Unit_disk].
If it is inside (have a distance from the origin lesser than one), a value of
one is produced (red dots in the figure), otherwise the value is zero (blue dots
in the figure).
The experiment is repeated tries number of times with new random values.

The function returns the number times a pseudo-randomly generated point fell
inside the unit disk [http://en.wikipedia.org/wiki/Unit_disk] for a given
number of tries.

	1
2

	def test(tries):
 return sum(hypot(random(), random()) < 1 for _ in range(tries))

One way to obtain a more precise result with a
Monte-Carlo method [http://en.wikipedia.org/wiki/Monte_Carlo_method] is to
perform the method multiple times. The following function executes repeatedly
the previous function to gain more precision.
These calls are handled by SCOOP using it’s map()
function.
The results, that is the number of times a random distribution over a 1x1
square hits the unit disk [http://en.wikipedia.org/wiki/Unit_disk] over a
given number of tries, are then summed and divided by the total of tries.
Since we only covered the upper right quadrant of the
unit disk [http://en.wikipedia.org/wiki/Unit_disk] because both parameters
are positive in a cartesian map, the result must be multiplied by 4 to get the
relation between area and circumference, namely
[image: \pi].

	1
2
3

	def calcPi(nbFutures, tries):
 expr = futures.map(test, [tries] * nbFutures)
 return 4. * sum(expr) / float(nbFutures * tries)

As previously stated, you must wrap your
code with a test for the __main__ name.

	1
2

	if __name__ == "__main__":
 print("pi = {}".format(calcPi(3000, 5000)))

You can now run your code using the command python -m scoop.

Sharing Constant

A typical usage of the shared constants is to broadcast a value or an object
that must be created at runtime and read by every worker, as the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	
def getValue(words):
 """Computes the sum of the values of the words."""
 value = 0
 for word in words:
 for letter in word:
 # shared.getConst will evaluate to the dictionary broadcasted by
 # the root Future
 value += shared.getConst('lettersValue')[letter]
 return value

if __name__ == "__main__":
 # Set the values of the letters according to the language and broadcast it
 # This list is set at runtime
 import sys
 if len(sys.argv) > 1 and sys.argv[1] == 'francais':
 shared.setConst(lettersValue={'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1,
 'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8, 'k':10, 'l': 1, 'm': 2, 'n': 1,
 'o': 1, 'p': 3, 'q': 8, 'r': 1, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4,
 'w':10, 'x':10, 'y':10, 'z': 10})
 print("French letter values used.")
 else:
 shared.setConst(lettersValue={'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1,
 'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8, 'k': 5, 'l': 1, 'm': 3, 'n': 1,
 'o': 1, 'p': 3, 'q':10, 'r': 1, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4,
 'w': 4, 'x': 8, 'y': 4, 'z': 10})
 print("English letter values used.")

 # Get the player words (generate a list of random letters
 import random
 import string
 random.seed(3141592653)
 words = []
 player_quantity = 4
 words_per_player = 10
 word_letters = (1, 6)
 for pid in range(player_quantity):
 player = []
 for _ in range(words_per_player):
 word = "".join(random.choice(string.ascii_lowercase) for _ in range(random.randint(*word_letters)))
 player.append(word)
 print("Player {pid} played words: {player}".format(**locals()))
 words.append(player)

 # Compute the score of every player and display it
 results = list(futures.map(getValue, words))
 for pid, result in enumerate(results):
 print("Player {pid}: {result}".format(**locals()))

Overall example

The examples/fullTree.py [https://github.com/soravux/scoop/blob/master/examples/full_tree.py] example holds a wrap-up of available SCOOP functionnalities.
It notably shows that SCOOP is capable of handling twisted and complex
hierarchical requirements.

Getting acquainted with the previous examples is fairly enough to use SCOOP, no
need to dive into this complicated example.

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	 Project Homepage

		SCOOP 0.7 2.0 documentation

API Reference

Futures module

The following methods are part of the futures module. They can be accessed like
so:

from scoop import futures

results = futures.map(func, data)
futureObject = futures.submit(func, arg)
...

More informations are available in the Usage document.

	
scoop.futures.as_completed(fs, timeout=None)[source]

	Iterates over the given futures that yields each as it completes. This
call is blocking.

	Parameters:	
	fs – The sequence of Futures to wait upon.

	timeout – The maximum number of seconds to wait. If None, then there
is no limit on the wait time.

	Returns:	An iterator that yields the given Futures as they complete
(finished or cancelled).

	
scoop.futures.map(func, *iterables)[source]

	Equivalent to
map(func, *iterables, ...) [http://docs.python.org/library/functions.html#map]
but func is executed asynchronously
and several calls to func may be made concurrently. This non-blocking call
returns an iterator which raises a TimeoutError if __next__() is called
and the result isn’t available after timeout seconds from the original call
to map(). If timeout is not specified or None then there is no limit to
the wait time. If a call raises an exception then that exception will be
raised when its value is retrieved from the iterator.

	Parameters:	
	func – Any picklable callable object (function or class object with
__call__ method); this object will be called to execute the Futures.
The callable must return a value.

	iterables – Iterable objects; each will be zipped to form an iterable
of arguments tuples that will be passed to the callable object as a
separate Future.

	timeout – The maximum number of seconds to wait. If None, then there
is no limit on the wait time.

	Returns:	A generator of map results, each corresponding to one map
iteration.

	
scoop.futures.map_as_completed(func, *iterables)[source]

	Equivalent to map, but the results are returned as soon as they are made
available.

	Parameters:	
	func – Any picklable callable object (function or class object with
__call__ method); this object will be called to execute the Futures.
The callable must return a value.

	iterables – Iterable objects; each will be zipped to form an iterable
of arguments tuples that will be passed to the callable object as a
separate Future.

	timeout – The maximum number of seconds to wait. If None, then there
is no limit on the wait time.

	Returns:	A generator of map results, each corresponding to one map
iteration.

	
scoop.futures.shutdown(wait=True)[source]

	This function is here for compatibility with futures (PEP 3148) and
doesn’t have any behavior.

	Parameters:	wait – Unapplied parameter.

	
scoop.futures.wait(fs, timeout=-1, return_when='ALL_COMPLETED')[source]

	Wait for the futures in the given sequence to complete.
Using this function may prevent a worker from executing.

	Parameters:	
	fs – The sequence of Futures to wait upon.

	timeout – The maximum number of seconds to wait. If negative or not
specified, then there is no limit on the wait time.

	return_when – Indicates when this function should return. The options
are:

	FIRST_COMPLETED
	Return when any future finishes or is cancelled.

	FIRST_EXCEPTION
	Return when any future finishes by raising an
exception. If no future raises an exception then
it is equivalent to ALL_COMPLETED.

	ALL_COMPLETED
	Return when all futures finish or are cancelled.

	Returns:	A named 2-tuple of sets. The first set, named ‘done’, contains the
futures that completed (is finished or cancelled) before the wait
completed. The second set, named ‘not_done’, contains uncompleted
futures.

Future class

The submit() function returns a
Future object.
This instance possesses the following methods.

	
class scoop._types.Future(parentId, callable, *args, **kargs)[source]

	This class encapsulates an independent future that can be executed in parallel.
A future can spawn other parallel futures which themselves can recursively spawn
other futures.

	
add_done_callback(callable_, inCallbackType='standard', inCallbackGroup=None)[source]

	Attach a callable to the future that will be called when the future
is cancelled or finishes running. Callable will be called with the
future as its only argument.

Added callables are called in the order that they were added and are
always called in a thread belonging to the process that added them. If
the callable raises an Exception then it will be logged and ignored. If
the callable raises another BaseException then behavior is not defined.

If the future has already completed or been cancelled then callable will
be called immediately.

	
cancel()[source]

	If the call is currently being executed or sent for remote
execution, then it cannot be cancelled and the method will return
False, otherwise the call will be cancelled and the method will
return True.

	
cancelled()[source]

	Returns True if the call was successfully cancelled, False
otherwise.

	
done()[source]

	Returns True if the call was successfully cancelled or finished
running, False otherwise. This function updates the executionQueue
so it receives all the awaiting message.

	
exception(timeout=None)[source]

	Return the exception raised by the call. If the call hasn’t yet
completed then this method will wait up to timeout seconds. More
information in the Usage page. If the call hasn’t completed in
timeout seconds then a TimeoutError will be raised. If timeout is not
specified or None then there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be
raised.

If the call completed without raising then None is returned.

	Returns:	The exception raised by the call.

	
result(timeout=None)[source]

	Return the value returned by the call. If the call hasn’t yet
completed then this method will wait up to ‘’timeout’’ seconds. More
information in the Usage page. If the call hasn’t completed in
timeout seconds then a TimeoutError will be raised. If timeout is not
specified or None then there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will
be raised.

If the call raised an exception then this method will raise the same
exception.

	Returns:	The value returned by the callable object.

	
running()[source]

	Returns True if the call is currently being executed and cannot be
cancelled.

Shared module

This module provides the setConst() and
getConst() functions allowing arbitrary object sharing
between futures. These objects can only be defined once and cannot be modified
once shared, hence the name constant.

	
class scoop.shared.SharedElementEncapsulation(element)[source]

	Encapsulates a reference to an element available in the shared module.

This is used by Futures (map on lambda, for instance).

	
scoop.shared.getConst(name, timeout=0.1)[source]

	Get a shared constant.

	Parameters:	
	name – The name of the shared variable to retrieve.

	timeout – The maximum time to wait in seconds for the propagation of
the constant.

	Returns:	The shared object.

Usage: value = getConst(‘name’)

SCOOP Constants and objects

The following objects are available to a program that was launched using SCOOP.

Note

Please note that using these is considered as advanced usage. You should not rely on these for other purposes than debugging.

	Constants
	Description

	scoop.IS_ORIGIN
	Boolean value. True if current instance is the root worker.

	scoop.BROKER
	broker.broker.BrokerInfo namedtuple. Address, ports and hostname of the broker.

	scoop.DEBUG
	Boolean value. True if debug mode is enabled, false otherwise.

	scoop.IS_RUNNING
	Boolean value. True if SCOOP is currently running, false otherwise.

	scoop.worker
	2-tuple. Unique identifier of the current instance in the pool.

	scoop.logger
	Logger object. Provides log formatting and redirection facilities. See the official documentation [http://docs.python.org/2/library/logging.html#logging.Logger] for more information on its usage.

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	 Project Homepage

		SCOOP 0.7 2.0 documentation

Contributing

Reporting a bug

You can report a bug on the
issue tracker [https://github.com/soravux/scoop/issues] on google code or
on the mailing list [http://groups.google.com/group/scoop-users].

Retrieving the latest code

You can check the latest sources with the command:

git clone https://github.com/soravux/scoop.git

Bear in mind that this development code may be partially broken or unfinished.
To get a stable version of the code, checkout to a release tag using
git checkout tags/<tag name>.

Coding guidelines

Most of those conventions are base on Python PEP8 [http://www.python.org/dev/peps/pep-0008/].

A style guide is about consistency. Consistency with this style guide is important.
Consistency within a project is more important. Consistency within one module or
function is most important.

Code layout

Same as PEP8.

Imports

Standard library imports must be first, followed by SCOOP imports and finally
custom modules. Each section should be separated by an empty line as such:

import system

from scoop import futures

import myModule

Whitespace in Expressions and Statements

Same as PEP8.

Comments

Same as PEP8

Documentation Strings

Same as PEP8

Naming Conventions

	Module: lowercase convention.

	Class: CapWords (upper camel case) convention (ie. AnExample).

	Function / Procedure: mixedCase (lower camel case) convention. First
word should be an action verb.

	Variable: lower_case_with_underscores convention. Should be as short
possible as.

If a name already exists in the standard library, an underscore is appended to
it. (ie. a custom range function could be called range_. A custom type
function could be called type_.)

Architecture

Communication protocols

Here are the message types from the point of view of a broker. Message coming from workers are always from their Task socket.

	Message name
	Socket
	Arguments
	Description

	INIT
	Task
	
	Handshake from a worker: allows a broker to recognize a new worker and propagate the currently shared variables.

	CONNECT
	Task
	Addresses
	Notify a broker of the existence of other brokers.

	REQUEST
	Task
	
	Worker requesting task(s).

	TASK
	Task
	Task
	A task (future) to be executed.

	REPLY
	Task*
	Task, Destination
	The result of a task to be sent to its parent. Communicated directly between workers if possible.

	SHUTDOWN
	Info
	
	Request a shutdown of the entire worker pool.

	VARIABLE
	Info
	Key, Value, Source
	A worker requested the share of a variable. The broker propagates it to its fellow workers.

	TASKEND
	Info
	askResult, groupID
	A collaborative task (scan, reduce, etc.) have ended, memory can be freed on workers.

	BROKER_INFO
	Info
	
	Propagate information about other brokers to workers.

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	SCOOP 0.7 2.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 scoop	

 	
 	
 scoop.futures	

 	
 	
 scoop.shared	

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.
 Last updated on Oct 22, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	SCOOP 0.7 2.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | M
 | P
 | R
 | S
 | W

A

 	

 	add_done_callback() (scoop._types.Future method)

 	

 	as_completed() (in module scoop.futures)

C

 	

 	cancel() (scoop._types.Future method)

 	

 	cancelled() (scoop._types.Future method)

D

 	

 	done() (scoop._types.Future method)

E

 	

 	exception() (scoop._types.Future method)

F

 	

 	Future (class in scoop._types)

G

 	

 	getConst() (in module scoop.shared)

M

 	

 	map() (in module scoop.futures)

 	

 	map_as_completed() (in module scoop.futures)

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 3148, [1]

 	PEP 395#what-s-in-a-name

R

 	

 	result() (scoop._types.Future method)

 	

 	running() (scoop._types.Future method)

S

 	

 	scoop.futures (module)

 	scoop.shared (module)

 	

 	SharedElementEncapsulation (class in scoop.shared)

 	shutdown() (in module scoop.futures)

W

 	

 	wait() (in module scoop.futures)

 Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.
 Last updated on Oct 22, 2016.
 Created using Sphinx 1.3.5.

 _static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		[image:] Project Homepage »

			SCOOP 0.7 2.0 documentation »

 All modules for which code is available

		scoop._types

		scoop.futures

		scoop.shared

 © Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

_images/introductory_tree.png

_modules/scoop/futures.html

 Navigation

 		
 index

 		
 modules |

 		[image:] Project Homepage »

			SCOOP 0.7 2.0 documentation »

 		Module code »

 Source code for scoop.futures

#
This file is part of Scalable COncurrent Operations in Python (SCOOP).
#
SCOOP is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
#
SCOOP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
#
You should have received a copy of the GNU Lesser General Public
License along with SCOOP. If not, see <http://www.gnu.org/licenses/>.
#
import os
import sys
from inspect import ismethod
from collections import namedtuple, Iterable
from functools import reduce
import itertools
import copy
import time

import scoop
from ._types import Future, CallbackType
from . import _control as control
from .fallbacks import (
 ensureScoopStartedProperlyMapFallback,
 ensureScoopStartedProperly,
 NotStartedProperly
)

Constants stated by PEP 3148 (http://www.python.org/dev/peps/pep-3148/#module-functions)
FIRST_COMPLETED = 'FIRST_COMPLETED'
FIRST_EXCEPTION = 'FIRST_EXCEPTION'
ALL_COMPLETED = 'ALL_COMPLETED'
_AS_COMPLETED = '_AS_COMPLETED'

This is the greenlet for running the controller logic.
_controller = None
callbackGroupID = itertools.count()

def _startup(rootFuture, *args, **kargs):
 """Initializes the SCOOP environment.

 :param rootFuture: Any callable object (function or class object with *__call__*
 method); this object will be called once and allows the use of parallel
 calls inside this object.
 :param args: A tuple of positional arguments that will be passed to the
 callable object.
 :param kargs: A dictionary of additional keyword arguments that will be
 passed to the callable object.

 :returns: The result of the root Future.

 Be sure to launch your root Future using this method."""
 import greenlet
 global _controller
 _controller = greenlet.greenlet(control.runController)
 try:
 result = _controller.switch(rootFuture, *args, **kargs)
 except scoop._comm.Shutdown:
 result = None
 control.execQueue.shutdown()
 return result

def _mapFuture(callable_, *iterables):
 """Similar to the built-in map function, but each of its
 iteration will spawn a separate independent parallel Future that will run
 either locally or remotely as `callable(*args)`.

 :param callable: Any callable object (function or class object with *__call__*
 method); this object will be called to execute each Future.
 :param iterables: A tuple of iterable objects; each will be zipped
 to form an iterable of arguments tuples that will be passed to the
 callable object as a separate Future.

 :returns: A list of Future objects, each corresponding to an iteration of
 map.

 On return, the Futures are pending execution locally, but may also be
 transfered remotely depending on global load. Execution may be carried on
 with any further computations. To retrieve the map results, you need to
 either wait for or join with the spawned Futures. See functions waitAny,
 waitAll, or joinAll. Alternatively, You may also use functions mapWait or
 mapJoin that will wait or join before returning."""
 childrenList = []
 for args in zip(*iterables):
 childrenList.append(submit(callable_, *args))
 return childrenList

def _mapGenerator(futures):
 """Generator function that iterates through the results in-order."""
 for future in _waitAll(*futures):
 yield future.resultValue

@ensureScoopStartedProperlyMapFallback
[docs]def map(func, *iterables, **kwargs):
 """map(func, *iterables)
 Equivalent to
 `map(func, *iterables, ...)
 <http://docs.python.org/library/functions.html#map>`_
 but *func* is executed asynchronously
 and several calls to func may be made concurrently. This non-blocking call
 returns an iterator which raises a TimeoutError if *__next__()* is called
 and the result isn't available after timeout seconds from the original call
 to *map()*. If timeout is not specified or None then there is no limit to
 the wait time. If a call raises an exception then that exception will be
 raised when its value is retrieved from the iterator.

 :param func: Any picklable callable object (function or class object with
 __call__ method); this object will be called to execute the Futures.
 The callable must return a value.
 :param iterables: Iterable objects; each will be zipped to form an iterable
 of arguments tuples that will be passed to the callable object as a
 separate Future.
 :param timeout: The maximum number of seconds to wait. If None, then there
 is no limit on the wait time.

 :returns: A generator of map results, each corresponding to one map
 iteration."""
 # TODO: Handle timeout
 futures = _mapFuture(func, *iterables)
 return _mapGenerator(futures)

[docs]def map_as_completed(func, *iterables, **kwargs):
 """map_as_completed(func, *iterables)
 Equivalent to map, but the results are returned as soon as they are made
 available.

 :param func: Any picklable callable object (function or class object with
 __call__ method); this object will be called to execute the Futures.
 The callable must return a value.
 :param iterables: Iterable objects; each will be zipped to form an iterable
 of arguments tuples that will be passed to the callable object as a
 separate Future.
 :param timeout: The maximum number of seconds to wait. If None, then there
 is no limit on the wait time.

 :returns: A generator of map results, each corresponding to one map
 iteration."""
 # TODO: Handle timeout
 for future in as_completed(_mapFuture(func, *iterables)):
 yield future.resultValue

def _recursiveReduce(mapFunc, reductionFunc, scan, *iterables):
 """Generates the recursive reduction tree. Used by mapReduce."""
 if iterables:
 half = min(len(x) // 2 for x in iterables)
 data_left = [list(x)[:half] for x in iterables]
 data_right = [list(x)[half:] for x in iterables]
 else:
 data_left = data_right = [[]]

 # Submit the left and right parts of the reduction
 out_futures = [None, None]
 out_results = [None, None]
 for index, data in enumerate([data_left, data_right]):
 if any(len(x) <= 1 for x in data):
 out_results[index] = mapFunc(*list(zip(*data))[0])
 else:
 out_futures[index] = submit(
 _recursiveReduce,
 mapFunc,
 reductionFunc,
 scan,
 *data
)

 # Wait for the results
 for index, future in enumerate(out_futures):
 if future:
 out_results[index] = future.result()

 # Apply a scan if needed
 if scan:
 last_results = copy.copy(out_results)
 if type(out_results[0]) is not list:
 out_results[0] = [out_results[0]]
 else:
 last_results[0] = out_results[0][-1]
 if type(out_results[1]) is list:
 out_results[0].extend(out_results[1][:-1])
 last_results[1] = out_results[1][-1]
 out_results[0].append(reductionFunc(*last_results))
 return out_results[0]

 return reductionFunc(*out_results)

@ensureScoopStartedProperly
def mapScan(mapFunc, reductionFunc, *iterables, **kwargs):
 """Exectues the :meth:`~scoop.futures.map` function and then applies a
 reduction function to its result while keeping intermediate reduction
 values. This is a blocking call.

 :param mapFunc: Any picklable callable object (function or class object with
 __call__ method); this object will be called to execute the Futures.
 The callable must return a value.
 :param reductionFunc: Any picklable callable object (function or class object
 with *__call__* method); this object will be called to reduce pairs of
 Futures results. The callable must support two parameters and return a
 single value.
 :param iterables: Iterable objects; each will be zipped to form an iterable
 of arguments tuples that will be passed to the mapFunc object as a
 separate Future.
 :param timeout: The maximum number of seconds to wait. If None, then there
 is no limit on the wait time.

 :returns: Every return value of the reduction function applied to every
 mapped data sequentially ordered."""
 return submit(
 _recursiveReduce,
 mapFunc,
 reductionFunc,
 True,
 *iterables
).result()

@ensureScoopStartedProperly
def mapReduce(mapFunc, reductionFunc, *iterables, **kwargs):
 """Exectues the :meth:`~scoop.futures.map` function and then applies a
 reduction function to its result. The reduction function will cumulatively
 merge the results of the map function in order to get a single final value.
 This call is blocking.

 :param mapFunc: Any picklable callable object (function or class object
 with *__call__* method); this object will be called to execute the
 Futures. The callable must return a value.
 :param reductionFunc: Any picklable callable object (function or class
 object with *__call__* method); this object will be called to reduce
 pairs of Futures results. The callable must support two parameters and
 return a single value.
 :param iterables: Iterable objects; each will be zipped to form an iterable
 of arguments tuples that will be passed to the callable object as a
 separate Future.
 :param timeout: The maximum number of seconds to wait. If None, then there
 is no limit on the wait time.

 :returns: A single value."""
 return submit(
 _recursiveReduce,
 mapFunc,
 reductionFunc,
 False,
 *iterables
).result()

def _createFuture(func, *args, **kwargs):
 """Helper function to create a future."""
 assert callable(func), (
 "The provided func parameter is not a callable."
)

 if scoop.IS_ORIGIN and "SCOOP_WORKER" not in sys.modules:
 sys.modules["SCOOP_WORKER"] = sys.modules["__main__"]

 # If function is a lambda or class method, share it (or its parent object)
 # beforehand
 lambdaType = type(lambda: None)
 funcIsLambda = isinstance(func, lambdaType) and func.__name__ == '<lambda>'
 # Determine if function is a method. Methods derived from external
 # languages such as C++ aren't detected by ismethod.
 funcIsMethod = ismethod(func)
 if funcIsLambda or funcIsMethod:
 from .shared import SharedElementEncapsulation
 func = SharedElementEncapsulation(func)

 return Future(control.current.id, func, *args, **kwargs)

@ensureScoopStartedProperly
def submit(func, *args, **kwargs):
 """Submit an independent asynchronous :class:`~scoop._types.Future` that will
 either run locally or remotely as `func(*args)`.

 :param func: Any picklable callable object (function or class object with
 __call__ method); this object will be called to execute the Future.
 The callable must return a value.
 :param args: A tuple of positional arguments that will be passed to the
 func object.
 :param kwargs: A dictionary of additional arguments that will be passed to
 the func object.

 :returns: A future object for retrieving the Future result.

 On return, the Future can be pending execution locally but may also be
 transfered remotely depending on load or on remote distributed workers. You
 may carry on with any further computations while the Future completes.
 Result retrieval is made via the :meth:`~scoop._types.Future.result`
 function on the Future."""
 child = _createFuture(func, *args, **kwargs)

 control.futureDict[control.current.id].children[child] = None
 control.execQueue.append(child)
 return child

def _waitAny(*children):
 """Waits on any child Future created by the calling Future.

 :param children: A tuple of children Future objects spawned by the calling
 Future.

 :return: A generator function that iterates on futures that are done.

 The generator produces results of the children in a non deterministic order
 that depends on the particular parallel execution of the Futures. The
 generator returns a tuple as soon as one becomes available."""
 n = len(children)
 # check for available results and index those unavailable
 for index, future in enumerate(children):
 if future.exceptionValue:
 raise future.exceptionValue
 if future._ended():
 future._delete()
 yield future
 n -= 1
 else:
 future.index = index
 future = control.current
 while n > 0:
 # wait for remaining results; switch to controller
 future.stopWatch.halt()
 childFuture = _controller.switch(future)
 future.stopWatch.resume()
 if childFuture.exceptionValue:
 raise childFuture.exceptionValue
 # Only yield if executed future was in children, otherwise loop
 if childFuture in children:
 childFuture._delete()
 yield childFuture
 n -= 1

def _waitAll(*children):
 """Wait on all child futures specified by a tuple of previously created
 Future.

 :param children: A tuple of children Future objects spawned by the calling
 Future.

 :return: A generator function that iterates on Future results.

 The generator produces results in the order that they are specified by
 the children argument. Because Futures are executed in a non deterministic
 order, the generator may have to wait for the last result to become
 available before it can produce an output. See waitAny for an alternative
 option."""
 for future in children:
 for f in _waitAny(future):
 yield f

[docs]def wait(fs, timeout=-1, return_when=ALL_COMPLETED):
 """Wait for the futures in the given sequence to complete.
 Using this function may prevent a worker from executing.

 :param fs: The sequence of Futures to wait upon.
 :param timeout: The maximum number of seconds to wait. If negative or not
 specified, then there is no limit on the wait time.
 :param return_when: Indicates when this function should return. The options
 are:

 =============== ==
 FIRST_COMPLETED Return when any future finishes or is cancelled.
 FIRST_EXCEPTION Return when any future finishes by raising an
 exception. If no future raises an exception then
 it is equivalent to ALL_COMPLETED.
 ALL_COMPLETED Return when all futures finish or are cancelled.
 =============== ==

 :return: A named 2-tuple of sets. The first set, named 'done', contains the
 futures that completed (is finished or cancelled) before the wait
 completed. The second set, named 'not_done', contains uncompleted
 futures."""

 DoneAndNotDoneFutures = namedtuple('DoneAndNotDoneFutures', 'done not_done')
 if timeout < 0:
 # Negative timeout means blocking.
 if return_when == FIRST_COMPLETED:
 next(_waitAny(*fs))
 elif return_when in [ALL_COMPLETED, FIRST_EXCEPTION]:
 for _ in _waitAll(*fs):
 pass
 done = set(f for f in fs if f.done())
 not_done = set(fs) - done
 return DoneAndNotDoneFutures(done, not_done)

 elif timeout == 0:
 # Zero-value entry means non-blocking
 control.execQueue.flush()
 control.execQueue.updateQueue()
 done = set(f for f in fs if f._ended())
 not_done = set(fs) - done
 return DoneAndNotDoneFutures(done, not_done)

 else:
 # Any other value means blocking for a given time.
 done = set()
 start_time = time.time()
 while time.time() - start_time < timeout:
 # Flush futures on local queue (to be executed remotely)
 control.execQueue.flush()
 # Block until data arrives (to free CPU time)
 control.execQueue.socket._poll(time.time() - start_time)
 # Update queue
 control.execQueue.updateQueue()

 for f in fs:
 if f._ended():
 done.add(f)

 not_done = set(fs) - done

 if return_when == FIRST_COMPLETED and len(done) > 0:
 break
 if len(not_done) == 0:
 break
 return DoneAndNotDoneFutures(done, not_done)

[docs]def as_completed(fs, timeout=None):
 """Iterates over the given futures that yields each as it completes. This
 call is blocking.

 :param fs: The sequence of Futures to wait upon.
 :param timeout: The maximum number of seconds to wait. If None, then there
 is no limit on the wait time.

 :return: An iterator that yields the given Futures as they complete
 (finished or cancelled).
 """
 #TODO: Handle timeout
 return _waitAny(*fs)

def _join(child):
 """This private function is for joining the current Future with one of its
 child Future.

 :param child: A child Future object spawned by the calling Future.

 :return: The result of the child Future.

 Only one Future can be specified. The function returns a single
 corresponding result as soon as it becomes available."""
 for future in _waitAny(child):
 return future.resultValue

def _joinAll(*children):
 """This private function is for joining the current Future with all of the
 children Futures specified in a tuple.

 :param children: A tuple of children Future objects spawned by the calling
 Future.

 :return: A list of corresponding results for the children Futures.

 This function will wait for the completion of all specified child Futures
 before returning to the caller."""
 return [_join(future) for future in _waitAll(*children)]

[docs]def shutdown(wait=True):
 """This function is here for compatibility with `futures` (PEP 3148) and
 doesn't have any behavior.

 :param wait: Unapplied parameter."""
 pass

 © Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

_images/logo.png
SCoOP

_images/architecture.png
worker worker
broker

worker root worker

worker worker

_modules/scoop/shared.html

 Navigation

 		
 index

 		
 modules |

 		[image:] Project Homepage »

			SCOOP 0.7 2.0 documentation »

 		Module code »

 Source code for scoop.shared

#!/usr/bin/env python
#
This file is part of Scalable COncurrent Operations in Python (SCOOP).
#
SCOOP is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
#
SCOOP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
#
You should have received a copy of the GNU Lesser General Public
License along with SCOOP. If not, see <http://www.gnu.org/licenses/>.
#

import itertools
from inspect import ismethod
from functools import reduce
import time

from . import encapsulation, utils
import scoop
from .fallbacks import ensureScoopStartedProperly, NotStartedProperly

elements = None

def _ensureAtomicity(fn):
 """Ensure atomicity of passed elements on the whole worker pool"""
 @ensureScoopStartedProperly
 def wrapper(*args, **kwargs):
 """setConst(**kwargs)
 Set a constant that will be shared to every workers.
 This call blocks until the constant has propagated to at least one
 worker.

 :param **kwargs: One or more combination(s) key=value. Key being the
 variable name and value the object to share.

 :returns: None.

 Usage: setConst(name=value)
 """
 # Note that the docstring is the one of setConst.
 # This is because of the documentation framework (sphinx) limitations.

 from . import _control

 # Enforce retrieval of currently awaiting constants
 _control.execQueue.socket.pumpInfoSocket()

 for key, value in kwargs.items():
 # Object name existence check
 if key in itertools.chain(*(elem.keys() for elem in elements.values())):
 raise TypeError("This constant already exists: {0}.".format(key))

 # Retry element propagation until it is returned
 while all(key in elements.get(scoop.worker, []) for key in kwargs.keys()) is not True:
 scoop.logger.debug("Sending global variables {0}...".format(
 list(kwargs.keys())
))
 # Call the function
 fn(*args, **kwargs)

 # Enforce retrieval of currently awaiting constants
 _control.execQueue.socket.pumpInfoSocket()

 # TODO: Make previous blocking instead of sleep
 time.sleep(0.1)

 # Atomicity check
 elementNames = list(itertools.chain(*(elem.keys() for elem in elements.values())))
 if len(elementNames) != len(set(elementNames)):
 raise TypeError("This constant already exists: {0}.".format(key))

 return wrapper

@_ensureAtomicity
def setConst(**kwargs):
 """setConst(**kwargs)
 Set a constant that will be shared to every workers.

 :param **kwargs: One or more combination(s) key=value. Key being the
 variable name and value the object to share.

 :returns: None.

 Usage: setConst(name=value)
 """
 from . import _control

 sendVariable = _control.execQueue.socket.sendVariable

 for key, value in kwargs.items():
 # Propagate the constant
 # for file-like objects, see encapsulation.py where copyreg was
 # used to overload standard pickling.
 if callable(value):
 sendVariable(key, encapsulation.FunctionEncapsulation(value, key))
 else:
 sendVariable(key, value)

[docs]def getConst(name, timeout=0.1):
 """Get a shared constant.

 :param name: The name of the shared variable to retrieve.
 :param timeout: The maximum time to wait in seconds for the propagation of
 the constant.

 :returns: The shared object.

 Usage: value = getConst('name')
 """
 from . import _control
 import time

 timeStamp = time.time()
 while True:
 # Enforce retrieval of currently awaiting constants
 _control.execQueue.socket.pumpInfoSocket()

 # Constants concatenation
 constants = dict(reduce(
 lambda x, y: x + list(y.items()),
 elements.values(),
 []
))
 timeoutHappened = time.time() - timeStamp > timeout
 if constants.get(name) is not None or timeoutHappened:
 return constants.get(name)
 time.sleep(0.01)

[docs]class SharedElementEncapsulation(object):
 """Encapsulates a reference to an element available in the shared module.

 This is used by Futures (map on lambda, for instance)."""
 def __init__(self, element):
 self.isMethod = False
 if utils.isStr(element):
 # Already shared element
 assert getConst(element, timeout=0) != None, (
 "Element must already be shared."
)
 self.uniqueID = element
 else:
 # Element to share
 # Determine if function is a method. Methods derived from external
 # languages such as C++ aren't detected by ismethod.
 if ismethod(element):
 # Must share whole object before ability to use its method
 self.isMethod = True
 self.methodName = element.__name__
 element = element.__self__

 # Lambda-like or unshared code to share
 uniqueID = str(scoop.worker) + str(id(element)) + str(hash(element))
 self.uniqueID = uniqueID
 if getConst(uniqueID, timeout=0) == None:
 funcRef = {uniqueID: element}
 setConst(**funcRef)

 def __repr__(self):
 return self.uniqueID

 def __call__(self, *args, **kwargs):
 if self.isMethod:
 wholeObj = getConst(
 self.__repr__(),
 timeout=float("inf"),
)
 return getattr(wholeObj, self.methodName)(*args, **kwargs)
 else:
 return getConst(self.__repr__(),
 timeout=float("inf"))(*args, **kwargs)

 def __name__(self):
 return self.__repr__()

 © Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

_images/monteCarloPiExample.gif
A = 3000 (x = 3.10007)

_modules/scoop/_types.html

 Navigation

 		
 index

 		
 modules |

 		[image:] Project Homepage »

			SCOOP 0.7 2.0 documentation »

 		Module code »

 Source code for scoop._types

#
This file is part of Scalable COncurrent Operations in Python (SCOOP).
#
SCOOP is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
#
SCOOP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
#
You should have received a copy of the GNU Lesser General Public
License along with SCOOP. If not, see <http://www.gnu.org/licenses/>.
#
from collections import namedtuple, deque
import itertools
import time
import sys
import greenlet
import scoop
from scoop._comm import Communicator, Shutdown

Backporting collection features
if sys.version_info < (2, 7):
 from scoop.backports.newCollections import Counter
else:
 from collections import Counter

POLLING_TIME = 2000

class CallbackType:
 """Type of groups enumeration."""
 standard = "standard"
 universal = "universal"

This class encapsulates a stopwatch that returns elapse time in seconds.
class StopWatch(object):
 # initialize stopwatch.
 def __init__(self):
 self.totalTime = 0
 self.startTime = time.time()
 self.halted = False
 # return elapse time.
 def get(self):
 if self.halted:
 return self.totalTime
 else:
 return self.totalTime + time.time() - self.startTime
 # halt stopWatch.
 def halt(self):
 self.halted = True
 self.totalTime += time.time() - self.startTime
 # resume stopwatch.
 def resume(self):
 self.halted = False
 self.startTime = time.time()
 # set stopwatch to zero.
 def reset(self):
 self.__init__()

class CancelledError(Exception):
 """The Future was cancelled."""
 pass

class TimeoutError(Exception):
 """The operation exceeded the given deadline."""
 pass

callbackEntry = namedtuple('callbackEntry', ['func', 'callbackType', 'groupID'])
[docs]class Future(object):
 """This class encapsulates an independent future that can be executed in parallel.
 A future can spawn other parallel futures which themselves can recursively spawn
 other futures."""
 rank = itertools.count()
 def __init__(self, parentId, callable, *args, **kargs):
 """Initialize a new Future."""
 self.id = (scoop.worker, next(Future.rank))
 self.executor = None # id of executor
 self.parentId = parentId # id of parent
 self.index = None # parent index for result
 self.callable = callable # callable object
 self.args = args # arguments of callable
 self.kargs = kargs # key arguments of callable
 self.creationTime = time.ctime() # future creation time
 self.stopWatch = StopWatch() # stop watch for measuring time
 self.greenlet = None # cooperative thread for running future
 self.resultValue = None # future result
 self.exceptionValue = None # exception raised by callable
 self.sendResultBack = True
 self.isDone = False
 self.callback = [] # set callback
 self.children = {} # set children list of the callable (dict for speedier delete)
 # insert future into global dictionary
 scoop._control.futureDict[self.id] = self

 def __lt__(self, other):
 """Order futures by creation time."""
 return self.creationTime < other.creationTime

 def __repr__(self):
 """Convert future to string."""
 try:
 return "{0}:{1}{2}{3}={4}".format(
 self.id,
 self.callable.__name__,
 self.args,
 self.kargs,
 self.resultValue,
)
 except AttributeError:
 return "{0}:{1}{2}{3}={4}".format(
 self.id,
 "partial",
 self.args,
 self.kargs,
 self.resultValue,
)

 def _switch(self, future):
 """Switch greenlet."""
 scoop._control.current = self
 assert self.greenlet is not None, ("No greenlet to switch to:"
 "\n{0}".format(self.__dict__))
 return self.greenlet.switch(future)

[docs] def cancel(self):
 """If the call is currently being executed or sent for remote
 execution, then it cannot be cancelled and the method will return
 False, otherwise the call will be cancelled and the method will
 return True."""
 if self in scoop._control.execQueue.movable:
 self.exceptionValue = CancelledError()
 scoop._control.futureDict[self.id]._delete()
 scoop._control.execQueue.remove(self)
 return True
 return False

[docs] def cancelled(self):
 """Returns True if the call was successfully cancelled, False
 otherwise."""
 return isinstance(self.exceptionValue, CancelledError)

[docs] def running(self):
 """Returns True if the call is currently being executed and cannot be
 cancelled."""
 return not self._ended() and self not in scoop._control.execQueue

[docs] def done(self):
 """Returns True if the call was successfully cancelled or finished
 running, False otherwise. This function updates the executionQueue
 so it receives all the awaiting message."""
 # Flush the current future in the local buffer (potential deadlock
 # otherwise)
 try:
 scoop._control.execQueue.remove(self)
 scoop._control.execQueue.socket.sendFuture(self)
 except ValueError as e:
 # Future was not in the local queue, everything is fine
 pass
 # Process buffers
 scoop._control.execQueue.updateQueue()
 return self._ended()

 def _ended(self):
 """True if the call was successfully cancelled or finished running,
 False otherwise. This function does not update the queue."""
 # TODO: Replace every call to _ended() to .isDone
 return self.isDone

[docs] def result(self, timeout=None):
 """Return the value returned by the call. If the call hasn't yet
 completed then this method will wait up to ''timeout'' seconds. More
 information in the :doc:`usage` page. If the call hasn't completed in
 timeout seconds then a TimeoutError will be raised. If timeout is not
 specified or None then there is no limit to the wait time.

 If the future is cancelled before completing then CancelledError will
 be raised.

 If the call raised an exception then this method will raise the same
 exception.

 :returns: The value returned by the callable object."""
 if not self._ended():
 return scoop.futures._join(self)
 if self.exceptionValue is not None:
 raise self.exceptionValue
 return self.resultValue

[docs] def exception(self, timeout=None):
 """Return the exception raised by the call. If the call hasn't yet
 completed then this method will wait up to timeout seconds. More
 information in the :doc:`usage` page. If the call hasn't completed in
 timeout seconds then a TimeoutError will be raised. If timeout is not
 specified or None then there is no limit to the wait time.

 If the future is cancelled before completing then CancelledError will be
 raised.

 If the call completed without raising then None is returned.

 :returns: The exception raised by the call."""
 return self.exceptionValue

[docs] def add_done_callback(self, callable_,
 inCallbackType=CallbackType.standard,
 inCallbackGroup=None):
 """Attach a callable to the future that will be called when the future
 is cancelled or finishes running. Callable will be called with the
 future as its only argument.

 Added callables are called in the order that they were added and are
 always called in a thread belonging to the process that added them. If
 the callable raises an Exception then it will be logged and ignored. If
 the callable raises another BaseException then behavior is not defined.

 If the future has already completed or been cancelled then callable will
 be called immediately."""
 self.callback.append(callbackEntry(callable_,
 inCallbackType,
 inCallbackGroup))

 # If already completed or cancelled, execute it immediately
 if self._ended():
 self.callback[-1].func(self)

 def _execute_callbacks(self, callbackType=CallbackType.standard):
 for callback in self.callback:
 isUniRun = (self.parentId[0] == scoop.worker
 and callbackType == CallbackType.universal)
 if isUniRun or callback.callbackType == callbackType:
 try:
 callback.func(self)
 except:
 pass

 def _delete(self):
 # TODO: Do we need this?
 # discard: remove if exists
 scoop._control.execQueue.inprogress.discard(self.id)
 for child in self.children:
 child.exceptionValue = CancelledError()
 scoop._control.delFuture(self)

class FutureQueue(object):
 """This class encapsulates a queue of futures that are pending execution.
 Within this class lies the entry points for future communications."""
 def __init__(self):
 """Initialize queue to empty elements and create a communication
 object."""
 self.movable = deque()
 self.ready = deque()
 self.inprogress = set()
 self.socket = Communicator()
 self.lastStatus = 0.0
 if scoop.SIZE == 1 and not scoop.CONFIGURATION.get('headless', False):
 self.lowwatermark = float("inf")
 self.highwatermark = float("inf")
 else:
 # TODO: Make it dependent on the network latency
 self.lowwatermark = 0.01
 self.highwatermark = 0.01

 def __del__(self):
 """Destructor. Ensures Communicator is correctly discarted."""
 self.shutdown()

 def __iter__(self):
 """Iterates over the selectable (cancellable) elements of the queue."""
 return itertools.chain(self.movable, self.ready)

 def __len__(self):
 """Returns the length of the queue, meaning the sum of it's elements
 lengths."""
 return len(self.movable) + len(self.ready)

 def timelen(self, queue_):
 stats = scoop._control.execStats
 times = Counter(hash(f.callable) for f in queue_)
 return sum(stats[f].median() * occur for f, occur in times.items())

 def append(self, future):
 """Append a future to the queue."""
 if future._ended() and future.index is None:
 self.inprogress.add(future)
 elif future._ended() and future.index is not None:
 self.ready.append(future)
 elif future.greenlet is not None:
 self.inprogress.add(future)
 else:
 self.movable.append(future)

 # Send the oldest future in the movable deque until under the hwm
 over_hwm = self.timelen(self.movable) > self.highwatermark
 while over_hwm and len(self.movable) > 1:
 sending_future = self.movable.popleft()
 if sending_future.id[0] != scoop.worker:
 sending_future._delete()
 self.socket.sendFuture(sending_future)
 over_hwm = self.timelen(self.movable) > self.highwatermark

 def askForPreviousFutures(self):
 """Request a status for every future to the broker."""
 # Don't request it too often (otherwise it ping-pongs because)
 # the broker answer triggers the _poll of pop()
 if time.time() < self.lastStatus + POLLING_TIME / 1000:
 return
 self.lastStatus = time.time()

 for future in scoop._control.futureDict.values():
 # Skip the root future
 if scoop.IS_ORIGIN and future.id == (scoop.worker, 0):
 continue

 if future not in self.inprogress:
 self.socket.sendStatusRequest(future)

 def pop(self):
 """Pop the next future from the queue;
 in progress futures have priority over those that have not yet started;
 higher level futures have priority over lower level ones; """
 self.updateQueue()

 # If our buffer is underflowing, request more Futures
 if self.timelen(self) < self.lowwatermark:
 self.requestFuture()

 # If an unmovable Future is ready to be executed, return it
 if len(self.ready) != 0:
 return self.ready.popleft()

 # Then, use Futures in the movable queue
 elif len(self.movable) != 0:
 return self.movable.popleft()
 else:
 # Otherwise, block until a new task arrives
 self.lastStatus = time.time()
 while len(self) == 0:
 # Block until message arrives
 self.askForPreviousFutures()
 self.socket._poll(POLLING_TIME)
 self.updateQueue()
 if len(self.ready) != 0:
 return self.ready.popleft()
 elif len(self.movable) != 0:
 return self.movable.popleft()

 def flush(self):
 """Empty the local queue and send its elements to be executed remotely.
 """
 for elem in self:
 if elem.id[0] != scoop.worker:
 elem._delete()
 self.socket.sendFuture(elem)
 self.ready.clear()
 self.movable.clear()

 def requestFuture(self):
 """Request futures from the broker"""
 self.socket.sendRequest()

 def updateQueue(self):
 """Process inbound communication buffer.
 Updates the local queue with elements from the broker."""
 for future in self.socket.recvFuture():
 if future._ended():
 # If the answer is coming back, update its entry
 try:
 thisFuture = scoop._control.futureDict[future.id]
 except KeyError:
 # Already received?
 scoop.logger.warn('{0}: Received an unexpected future: '
 '{1}'.format(scoop.worker, future.id))
 continue
 thisFuture.resultValue = future.resultValue
 thisFuture.exceptionValue = future.exceptionValue
 thisFuture.executor = future.executor
 thisFuture.isDone = future.isDone
 # Execute standard callbacks here (on parent)
 thisFuture._execute_callbacks(CallbackType.standard)
 self.append(thisFuture)
 future._delete()
 elif future.id not in scoop._control.futureDict:
 scoop._control.futureDict[future.id] = future
 self.append(scoop._control.futureDict[future.id])
 else:
 self.append(scoop._control.futureDict[future.id])

 def remove(self, future):
 """Remove a future from the queue. The future must be cancellable or
 this method will raise a ValueError."""
 self.movable.remove(future)

 def sendResult(self, future):
 """Send back results to broker for distribution to parent task."""
 # Greenlets cannot be pickled
 future.greenlet = None
 assert future._ended(), "The results are not valid"
 self.socket.sendResult(future)

 def shutdown(self):
 """Shutdown the ressources used by the queue"""
 self.socket.shutdown()

 if scoop:
 if scoop.DEBUG:
 from scoop import _debug
 _debug.writeWorkerDebug(
 scoop._control.debug_stats,
 scoop._control.QueueLength,
)

 © Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.

 Last updated on Oct 22, 2016.

 Created using Sphinx 1.3.5.

_static/comment-close.png

_images/math/f9cd0562fb91549dbcc5583582e21812dc728e72.png

_images/math/c1bd4cb4e3647c6b2356b7ccf2f52aeffedd1b61.png

_static/up.png

_static/minus.png

_images/reduction.png
reduction

o ® 0 ™0 O 6 O

search.html

 Navigation

 		
 index

 		
 modules |

 		SCOOP 0.7 2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Marc Parizeau, Olivier Gagnon, Marc-André Gardner, Yannick Hold-Geoffroy.
 Last updated on Oct 22, 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/logo.png
SCoOP

